Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students’ decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part and parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was “in the making.” Students’ responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students’ nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.more » « less
-
null (Ed.)This research paper presents a literature review of Computational Thinking (CT) frameworks and assessment practices. CT is a 21st century way of solving a problem. It refers specifically to the methods that are effective when trying to solve a problem with a machine or other computational tools. In the past few years, CT researchers and educationists' significant movement started to look for a formal definition and composition of CT in K-12 and higher education. From this effort, over 20 different definitions and frameworks for CT have emerged. Although the availability of literature on CT has been increasing over the last decade, there is limited research synthesis available on how to assess CT better. Besides, it is known that in higher education designing assessments for CT is challenging and one of the primary reasons is that the precise meaning of CT is still unknown. This research paper, therefore, presents a systematized literature review on CT frameworks and assessment practice. We search three different databases and review 19 journal articles that address the assessment of CT in higher education to answer the following two research questions: 1) What does the literature inform us about practices and types of assessments used to evaluate CT in higher education? 2) Which frameworks of CT are present in literature to support CT assessment in higher education? The critical components of this review focus on frameworks and assessment practices based on CT. We develop a synthesis of suggestions and explanations to answer the proposed questions based on literature from recent research in CT. Based on our initial synthesis, we found a disconnect between theory and practice. Specifically, neither the ideas within CT frameworks nor those from CT assessment research are being utilized by the other. Therefore, there is a dire need to connect the two for practical implementation and further research in CT in higher education.more » « less
An official website of the United States government
